OUTER DIRICHLET PROBLEM

FOR A SEMI - INFINITE CYIINDER

PMM Vol. 33, N², 1969, pp. 287-290
Iu. N. KUZ'MIN
(Leningrad)
(Received June 27. 1968)
We consider an axisymmetric Dirichlet problem for the Laplace equation in a region representing a space with a semi-infinite cylindrical cut, and reduce the problem to the Fredholm integral equation of second kind. Solution of this equation is shown to exist and be unique, using the principle of a fixed point.

1. Formulation of the problem and its reduction to dual integral equations. We divide the outside of the cylinder (Fig. 1) into two regions :

Fig. 1 $1(z<0,0 \leqslant r<\infty)$ and $2(z>0,1<r<\infty)$ and we obtain in these regions the harmonic functions $u_{1}(r, z)$ and $u_{2}(r, z) \quad \Delta u_{1}=0, \quad \Delta u_{2}=0$
satisfying the boundary conditions

$$
\left.u_{1}\right|_{\substack{z=0 \\ r<1}}=f(r),\left.\quad u_{2}\right|_{r=1}=g(z)
$$

and the conditions of continuity

$$
\begin{equation*}
\left.u_{1}\right|_{z=0}=\left.u_{2}\right|_{z=0},\left.\quad \frac{\partial u}{\partial z}\right|_{\substack{z=0 \\ r>1}}=\left.\frac{\partial u}{\partial z}\right|_{z=0} \tag{1.3}
\end{equation*}
$$

Regarding the behavior at infinity we assume, that
$\lim u_{1}=0$ as $z \rightarrow-\infty$, and when $z \rightarrow+\infty$, the solution u_{2} should become a solution of the corresponding antisymmetric Dirichlet problem for an infinite cylinder.

We seek the harmonic functions $u_{1}(r, z)$ and $u_{2}(r, z)$ in the form of the following integrals:

$$
\begin{equation*}
u_{\infty}(r, z)=\int_{0}^{\infty} A(\lambda) J_{0}(\lambda r) e^{\lambda z} d \lambda \tag{1.4}
\end{equation*}
$$

$u_{2}(r, z)=\frac{2}{\pi} \int_{0}^{\infty} \frac{K_{0}(v r)}{K_{0}(v)} \sin v z d v \int_{0}^{\infty} g(\zeta) \sin v \zeta d \zeta+\int_{0}^{\infty} \lambda B(\lambda) \operatorname{Im}\left[\frac{H_{0}{ }^{(1)}(\lambda r)}{H_{0}{ }^{(1)}(\lambda)}\right] e^{-\lambda z} d \lambda-$
satisfying the indicated conditions at infinity and the second condition of (1.2). The first condition of (1.3) will become

$$
\begin{equation*}
\int_{0}^{\infty} A(\lambda) J_{0}(\lambda r) d \lambda=\int_{0}^{\infty} \lambda B(\lambda) \operatorname{Im}\left[\frac{H_{0}{ }^{(1)}(\lambda r)}{H_{0}{ }^{(1)}(\lambda)}\right] d \lambda \tag{1.6}
\end{equation*}
$$

This enables us to use the Weber transforms to express $B(\lambda)$ in terms of $A(\lambda)$

$$
\begin{equation*}
B(\lambda)=\int_{i}^{\infty} p \operatorname{Im}\left[H_{0}^{(2)}(\lambda) H_{0}^{(\mathbf{1})}(\lambda \rho)\right] d \rho \int_{0}^{\infty} A(v) J_{0}(v \rho) d v \tag{1.7}
\end{equation*}
$$

Fulfilling the remaining conditions of (1.2) and (1.3) we can reduce the problem to dual integrations (dual equations with the Weber kernel were considered e. g. in [1-3]) in $A(\lambda)$

$$
\begin{gather*}
\int_{0}^{\infty} A(\lambda) J_{0}(\lambda r) d \lambda=f(r) \tag{1.8}\\
\int_{0}^{\infty} \lambda A(\lambda) J_{0}(\lambda r) d \lambda+\int_{0}^{\infty} \lambda^{2} B(\lambda) \operatorname{Im}\left[\frac{H_{0}^{(1)}(\lambda r)}{H_{0}^{(1)}(\lambda)}\right] d \lambda=\frac{2}{\pi} \int_{0}^{\infty} \frac{K_{0}(v r)}{K_{0}(v)} v d v \int_{0}^{\infty} g(\zeta) \sin v \zeta d \zeta \\
(1<r<\infty) \tag{1.9}
\end{gather*}
$$

2. Reduction of the dual integral equations to the Fredholm

 integral equations. Let us make the following integral substitution:$$
\begin{equation*}
A(\lambda)=\int_{0}^{\infty} \Phi(t) \cos \lambda t d t \tag{2.1}
\end{equation*}
$$

We shall find that it will be more convenient to seek $\Phi(t)$ sepatately at each range $(0,1)$ and $(1, \infty)$ of variation of t. We shall therefore use the following notation:

$$
\Phi(t)= \begin{cases}\varphi(t) & (0<t<1) \tag{2.2}\\ \psi(t) & (1<t<\infty)\end{cases}
$$

Inserting (2.1) into (1.8) and using the well known relation [4]

$$
\int_{0}^{\infty} J_{0}(\lambda r) \cos \lambda t d \lambda=\left\{\begin{array}{cl}
0 & (t>r) \tag{2.3}\\
\left(r^{2}-t^{2}\right)^{-1 / 2} & (t<r)
\end{array}\right.
$$

we obtain

$$
\begin{equation*}
\int_{0}^{r} \frac{\varphi(t) d t}{\sqrt{r^{2}-t^{2}}}=f(r) \quad(0<r<1) \tag{2.4}
\end{equation*}
$$

This is the Schlömilch equation in $\varphi(t)$ and its solution is

$$
\begin{equation*}
\varphi(t)=\frac{2}{\pi} \frac{d}{d t} \int_{0}^{t} \frac{\rho f(\rho) d \rho}{\sqrt{t^{2}-r^{2}}} \tag{2.5}
\end{equation*}
$$

Inserting now (2.1) into (1.9) we obtain

$$
\begin{align*}
\int_{0}^{\infty} \lambda J_{0}(\lambda r) d \lambda & \int_{0}^{\infty} \Phi(\tau) \cos \lambda \tau d \tau=\frac{2}{\pi} \int_{0}^{\infty} \frac{K_{0}(v r)}{K_{0}(v)} v d v \int_{0}^{\infty} g(\zeta) \sin v_{5}^{\tau} d \zeta- \\
& -\int_{0}^{\infty} \lambda^{2} B(\lambda) \operatorname{Im}\left[\frac{H_{0}^{(1)}(\lambda r)}{H_{0}^{(1)}(\lambda)}\right] d \lambda, \quad(1<r<\alpha) \tag{2.6}
\end{align*}
$$

Let us apply to (2.6) the following integral transformation: multiply each term by $2 / \pi r\left(r^{2}-t^{2}\right)^{-1 / 2}$ and integrate with respect to r from t to ∞. Making also use of
$\int_{i}^{\omega} \frac{J_{0}(\lambda r) r d r}{\sqrt{r^{2}-t^{2}}}=\frac{\cos \lambda t}{\lambda}, \quad \int_{i}^{\infty} \frac{K_{0}(\lambda r) r d r}{\sqrt{r^{2}-t^{2}}}=\frac{\pi}{2 \lambda} e^{-\lambda t}, \quad \int_{i}^{\infty} \frac{H_{0}{ }^{(1)}(\lambda r) r d r}{\sqrt{r^{2}-t^{2}}}=\frac{e^{i \lambda t}}{\lambda}$
we obtain (2.6) in the form

$$
\begin{equation*}
\Phi(t)=\frac{2}{\pi} \int_{0}^{\infty} \frac{e^{-v t}}{K_{0}(v)} d v \int_{0}^{\infty} g(\zeta) \sin v \zeta d \zeta-\frac{2}{\pi} \int_{0}^{\infty} \lambda B(\lambda) \operatorname{lm}\left[\frac{e^{i \lambda t}}{H_{0}^{(1)}(\lambda)}\right] d \lambda \tag{2.8}
\end{equation*}
$$

Let us consider (2.8) in the region $1<t<\infty$. Its left side is $\psi(t)$ and the first integral in its right side converges for all $g(z)$ which can be expanded into Fourier sine integral. We shall inspect the second integral in the right side of (2.8) in more detail. To begin with

$$
\begin{align*}
& B(\lambda)=\int_{1}^{\infty} \rho \operatorname{Im}\left[H_{0}^{(2)}(\lambda) H_{0}^{(1)}(\lambda \rho)\right] d \rho \int_{0}^{\rho} \frac{\Phi(\tau) d \tau}{\sqrt{\rho^{2}-\tau^{2}}}= \\
& =B_{1}(\lambda)+\operatorname{Im}\left[H_{0}^{(2)}(\lambda) \int_{i}^{\infty} \psi(\tau) d \tau \int_{\tau}^{\infty} \frac{H_{0}^{(1)}(\lambda \rho) \rho d_{p}}{\sqrt{\rho^{2}-\tau^{2}}}\right] \tag{2.9}
\end{align*}
$$

where $B_{1}(\lambda)$ denotes the following function of λ :

$$
\begin{equation*}
B_{1}(\lambda)=\int_{1}^{\infty} \rho \operatorname{Im}\left[H_{0}^{(2)}(\lambda) H_{0}^{(1)}(\lambda \rho)\right] d \rho \int_{0}^{1} \frac{\varphi(\tau) d \tau}{\sqrt{\rho^{2}-\tau^{2}}} \tag{2.10}
\end{equation*}
$$

which is already known.
By the third integral of (2.7) we have

$$
\begin{align*}
& \text { of (2.7) we have } \tag{2.11}\\
& B(\lambda)=B_{1}(\lambda)+\frac{1}{\lambda} \int_{1}^{\infty} \psi(\tau) \operatorname{Im}\left[H_{0}^{(2)}(\lambda) e^{i \lambda \tau}\right] d \tau
\end{align*}
$$

hence the second integral in the right side of (2.8) can be written as

$$
\begin{equation*}
\int_{0}^{\infty} \lambda B(\lambda) \operatorname{Im} \frac{e^{i \lambda, t}}{H_{0}{ }^{(1)}(\lambda)} d \lambda=S(t)+\int_{0}^{\infty} \operatorname{Im} \cdot\left[\frac{e^{i \lambda t}}{H_{0}{ }^{(1)}(\lambda)}\right] d \lambda \int_{1}^{\infty} \psi(\tau) \operatorname{Im}\left[H_{0}{ }^{(2)}(\lambda) e^{i \lambda \tau}\right] d \tau \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
S(t)=\int_{0}^{\infty} \lambda B_{1}(\lambda) \operatorname{Im}\left[\frac{e^{i \lambda t}}{H_{0}^{(t)}(\lambda)}\right] d \lambda \tag{2.13}
\end{equation*}
$$

Since

$$
\begin{equation*}
\operatorname{Im}\left[\frac{e^{i \lambda t}}{H_{0}{ }^{1 / 1}(\lambda)}\right] \operatorname{Im}\left[H_{0}{ }^{(2)}(\lambda) e^{i \lambda \tau}\right] \equiv \cos \lambda t \cos \lambda \tau-\operatorname{Re}\left[\frac{J_{0}(\lambda)}{H_{0}{ }^{(1)}(\lambda)} e^{i \lambda(t+\tau)}\right] \tag{2.14}
\end{equation*}
$$

expression (2.12) can be transformed into

$$
\begin{equation*}
\int_{0}^{\infty} \lambda B(\lambda) \operatorname{Im}\left[\frac{e^{i \lambda t}}{H_{0}{ }^{(1)}(\lambda)}\right] d \lambda=S(t)+\frac{\pi}{2} \psi(t)-\operatorname{Re}\left[\int_{0}^{\infty} \frac{J_{0}(\lambda)}{I_{0}{ }^{(1)}(\lambda)} e^{i \lambda t} d \lambda \int_{1}^{\infty} \psi(\tau) e^{i \lambda \tau} d \tau\right] \tag{2.15}
\end{equation*}
$$

Let us consider the last integral on the complex variable λ-plane. Using the Cauchy's theorem we shall replace the integration along the real axis by the integration along the imaginary axis. For $\lambda=i \nu$ we obtain

$$
\begin{gather*}
\int_{0}^{\infty} \frac{J_{0}(\lambda)}{H_{0}{ }^{(1 \prime}(\lambda)} e^{i \lambda t} d \lambda \int_{1}^{\infty} \psi(\tau) e^{i \lambda \tau} d \tau=\frac{\pi}{2} \int_{0}^{\infty} i \frac{I_{0}(v)}{K_{0}(v)} e^{-v t} i d v \int_{1}^{\infty} \psi(\tau) e^{-v \tau} d \tau= \\
=-\frac{\pi}{2} \int_{1}^{\infty} \psi(\tau) d \tau \int_{0}^{\infty} \frac{I_{0}(v)}{K_{0}(v)} e^{-v\left(t_{i} \tau\right)} d^{1} \tag{2.16}
\end{gather*}
$$

Inserting now (2.16) into (2.15) and (2.15) into (2.8), we obtain the following integral equation:
$\psi(t)=\frac{1}{\pi} \int_{0}^{\infty} \frac{e^{-v t}}{K_{0}(v)} d v \int_{0}^{\infty} g(\zeta) \sin v \zeta d \zeta-\frac{1}{\pi} S(t)+\frac{1}{2} \int_{1}^{\infty} \psi(\tau) d \tau \int_{0}^{\infty} \frac{I_{0}(v)}{K_{0}(v)} e^{\left.-v \cdot t_{1} \tau\right)} d v$
Introducing a new variable

$$
\begin{equation*}
\omega(t)=V \overline{t-1} \psi(t) \tag{2.18}
\end{equation*}
$$

we obtain the following integral equation:

$$
\begin{equation*}
\omega(t)=h(t)-\frac{1}{2 \pi} \int_{1}^{\infty} \omega(\tau) K(t, \tau) d \tau \tag{2:19}
\end{equation*}
$$

where

$$
\begin{gather*}
h(t)=\frac{\sqrt{t-1}}{\pi}\left[\int_{0}^{\infty} \frac{e^{-v t}}{K_{0}(v)} d v \int_{0}^{\infty} g(\zeta) \sin v \zeta d \zeta-S(t)\right] \\
K(t, \tau)=\left(\frac{t-1}{\tau-1}\right)^{1 / 2} \int_{0}^{\infty} \Lambda(v) e^{-v(t+\tau-2)} d v, \quad \Lambda(v)=\pi \frac{I_{0}(v)}{K_{0}(v)} e^{-2 v} \tag{2.20}
\end{gather*}
$$

It can be shown (see the Appendix) that, if $h(t)$ is a bounded and continuous function, then Eq. (2.19) has a unique solution in this case of functions.

Thus the solution is given by Formulas (1.4)-(1.7), (2.1) and (2.2), in which the functions $\varphi(t)$ and $\psi(t)$ are defined by (2.15) and the integral equation (2.19).
3. Appendix. Let us consider the operator $y=U(\omega)$ defined by

$$
y(t)=h(t)-\frac{1}{2 \pi} \int_{i}^{\infty}\left[\left(\frac{t-1}{\tau-1}\right)^{1 / 2} \int_{0}^{\infty} \Lambda(v) e^{-v(t+\tau-2)} d v\right] \omega(\tau) d \tau
$$

in a space of bounded, continuous functions with the norm

$$
\rho\left(\omega, \omega^{*}\right)=\max \left|\omega(t)-\omega^{*}(t)\right|
$$

and let us consider the modulus of the difference between y and y^{*} where $y^{*}=U\left(\omega^{*}\right)$

$$
\begin{aligned}
\left|y(t)-y^{*}(t)\right| \leqslant & \frac{1}{2 \pi} \int_{i}^{\infty}\left(\frac{t-1}{\tau-1}\right)^{1 / 2}\left|\int_{\theta}^{\infty} \Lambda(v) e^{-v(t+\tau-2)} d v\right| \cdot\left|\omega(\tau)-\omega^{*}(\tau)\right| d \tau \leqslant \\
& \leqslant \frac{A_{\max }^{2 \pi}}{2 \pi} p\left(\omega, \omega^{*}\right) \int_{i}^{\infty} \frac{\sqrt{t-1} d \tau}{\sqrt{\tau-1}(t+\tau-2)}
\end{aligned}
$$

The last integral is easily calculated and is equal to π, hence

$$
\rho\left(y, y^{*}\right) \leqslant 1 / 2 \Lambda_{\max } \rho\left(\omega, \omega^{*}\right)
$$

By (2.20) $\Lambda_{\max }=1.3305<2$, therefore

$$
\rho\left(y, y^{*}\right) \geqslant a \rho\left(\omega, \omega^{*}\right) \quad(a<1)
$$

Thus the operator $y=U(\omega)$ is a contraction operator and by the Banach theorem it has a fixed point. This implies that $(2,19)$ has a unique solution in the given class of functions, which can be obtained by the method of consecutive approximations.

BIBLIOGRAPHY

1. Arutiunian, N. Kh. and Babloian, A. A., Contact problems for a halfspace with an inclusion. PMM Vol. 30, Na6, 1966.
2. Abramian, B. L. and Arutiunian, N. Kh. . On some contact problems for composite half-spaces. PMM Vol. 31, N6. 1967.
3. Srivastav, R, P. . An axisymmetric mixed boundary value problem for a halfspace with a cylindrical cavity. J. Math. and Mech. . Vol. 13, N 3 3, 1964.
4. Watson, G. N. . A Treatise on the theory of Bessel Functions. Cambr. Univ. Pr., 1944.
